
1

Bernoulli Distribution as a tiny Neural Network

Ankur Gupta∗

April 28, 2019

1 Introduction

Logistic regression is often considered the smallest neural network for binary clas-
sification. We can think of Bernoulli distribution as an even smaller neural net-
work – one that doesn’t even depend on the input data. Such a neural network
would likely not be useful in practice. However, given it’s simplicity, it serves as an
illuminating example to help us understand the statistical assumptions underly-
ing a neural network model. The assumptions we require for modeling Bernoulli
distribution as a neural network are also required for larger neural networks. As
an example, using Bernoulli distribution as a tiny neural network, we can easily
demonstrate how the famous cross-entropy loss comes into being. We can even
extend this Bernoulli distribution model framework to recreate the familiar logis-
tic regression model by simply replacing a constant parameter by a sigmoid-affine
function.

We will start with Bernoulli distribution fundamentals first (Section 2) to get
ourselves familiar with the various equivalent forms of Bernoulli distribution. In
Section 3, we describe the familiar binary classification problem with relevant
notation. We model the binary classification problem as a Bernoulli distribution
in Section 4 and extend the Bernoulli distribution model to the familiar logistic
regression in Section 5. Finally, provide some notable points in the summary at
the end.

2 Bernoulli distribution

Bernoulli distribution, owing to its simplicity, is used more often than it is noticed.
A random variable X ∼ Bernoulli(p) has the following probability mass function

∗ankur@perfectlyrandom.org



2

(pmf ):

P(X = 1) = p

P(X = 0) = 1− p (1)

P(X /∈ {0, 1}) = 0

in which, the only parameter, p, is a probability and therefore must satisfy 0 ≤
p ≤ 1. We call Equation 1 the raw form pmf of the Bernoulli distribution.

The raw form pmf is simple to understand but its different case structure makes
it difficult to use in other derivation. We can combine the two of the three cases
in Equation 1 into one equation without changing anything about the distribu-
tion. This results in the following two forms of pmf – the additive form shown in
Equation 2 and the multiplicative form shown in Equation 3.

P(X = x) =

{
px + (1− p)(1− x) x ∈ {0, 1}
0 otherwise

(2)

P(X = x) =

{
px(1− p)(1−x) x ∈ {0, 1}
0 otherwise

(3)

All three forms — raw, additive, multiplicative1 — are equivalent to each other
and represent the same exact distribution. This implies that no matter which of
the three forms we use for our analysis, we should get the exact same analytical
result. However, one form may be easier to work with than the others when
wrangling algebraic equations. The multiplicative form is the most common one
used in both statistical analysis and with neural networks.

3 Binary classification

Let’s consider a familiar application of supervised binary classification in com-
puter vision – image classification. We would like to classify a given image into
one of two classes – a cat image versus a dog image, as shown in Figure 1.

In a supervised setting, we usually have training data available, which is rep-
resented as:

{(x(1), y(1)), (x(2), y(2)), . . . , (x(i), y(i)), . . . , (x(m), y(m))} (4)

in which, x(i) ∈ Rnx is the input data and y(i) ∈ {0, 1} is the output label. For the
cat vs dog example, x(i) is a vector of pixel values obtained by flattening the tensor
that represents an image and y(i) represents the label – cat (y = 1) or dog (y = 0).

1Note that we interpret 00 as 1 and log 00 = 0 log 0 = 0.



3

(a) Cat (b) Dog

Figure 1: Binary classification: cat versus dog. Images from Pexels.

4 Modeling the binary classification problem as Bernoulli
distribution

4.1 Modeling binary classification

We aim to fit a function to describe the input-output relationship in the train-
ing data. We could attempt to find a suitable deterministic function y = f (x, θ)

and minimize (w.r.t the model parameters θ) some appropriate measurement of
discrepancy (Φ(θ)) between the function’s predicted labels and true labels2. Al-
ternatively, we could model the output label as a random variable3

Y ∼ SomeDistribution(x, θ) (5)

in which, θ ∈ Rnt is the set of model parameters. The training data in Equa-
tion 4 is interpreted as a list of m statistical samples of Y generated along with the
corresponding values of x.4 When we choose to model the output label as ran-
dom variable, we have a well-established approach to minimize the discrepancy
between the predicted and true labels – maximum likelihood estimation.

4.2 Modeling with Bernoulli distribution

Since the true output labels only take values in {0, 1}, it would be ideal if our
choice of random variable in Equation 5 also assumes values in {0, 1}. Bernoulli
distribution is one such choice:

Y ∼ Bernoulli(p) (6)

2For certain choices of f (x, θ) and Φ(θ), the estimated model parameters may equal the estimated
model parameters obtained using the statistical modeling approach, analytically.

3A random variable is also a function (a measurable function) but we choose to highlight the dif-
ference between any deterministic function and the restrictive measurable function that is a random
variable.

4For this problem, we choose to consider the list of different images (i. e., x’s) as deterministically
fixed. Therefore, x is not random and we do not condition on x.

https://www.pexels.com


4

in which, θ =
[
p
]
. Note how the model above doesn’t depend on the input x at

all.
Now that we have a statistical model to describe the output, we can write

down the likelihood as follows:

L(θ)

= P
(
(Y(1) = y(1)) ∩ (Y(2) = y(2)) ∩ . . . (Y(i) = y(i)) ∩ . . . (Y(m) = y(m)); θ

)
(7)

= P
(
(Y(1) = y(1)) ∩ (Y(2) = y(2)) ∩ . . . (Y(i) = y(i)) ∩ . . . (Y(m) = y(m)) | Θ = θ

)
(8)

Equation 8 is the Bayesian form of likelihood, in which we choose to model the
parameters as a random variable Θ. Equation 7 is also the likelihood but it doesn’t
consider the model parameters as random variables. We will only use the Equa-
tion 7 form of likelihood in this document because we have no need to model the
parameter(s) as random variable(s) at this time.

Assuming independence, we can re-write Equation 7 as:

L(θ) =
i=m

∏
i=1

P
(

Y(i) = y(i); θ
)

(9)

Substituting the multiplicative form (Equation 3) and applying the knowledge that
the output labels y(i) ∈ {0, 1}, we obtain:

L(θ) =
i=m

∏
i=1

py(i)(1− p)(1−y(i)) (10)

Taking logarithm, the log-likelihood is:

logL(θ) =
i=m

∑
i=1

[
y(i) log p + (1− y(i)) log(1− p)

]
(11)

The expression above is the famous cross-entropy loss5. Maximizing the log-
likelihood:

0 =
∂ logL(θ)

∂p

0 =
i=m

∑
i=1

[
y(i)

p
− (1− y(i))

(1− p)

]

=⇒ p̂ =
∑i=m

i=1 y(i)

m
(12)

5This is a demonstration of the equivalence between maximizing the likelihood and minimizing
the KL divergence.



5

in which p̂ is the maximum likelihood estimate for p. In order to confirm that this
value of p̂ actually maximizes the log-likelihood, we can show that the second
order derivative is negative as follows:

∂2 logL(θ)
∂p2 = −

i=m

∑
i=1

[
y(i)

p2 +
(1− y(i))
(1− p)2

]
< 0 (13)

See Appendix A for the same result obtained using the additive form.

5 Extension to logistic regression

In the previous subsection, we didn’t even consider the input x in our model. If
we want to include the input x, we could replace the previously constant p with a
function of x. A simple way to include x is to model p as an affine6 function of x
instead of a constant

p = wTx + b (14)

in which, w ∈ Rnx and b ∈ R are model parameters. However, there is a problem
with Equation 14 – there is no guarantee that the expression wTx + b would be
within 0 and 1, as required for p.7 We can solve this problem easily by passing
wTx + b through a sigmoid function to obtain the following sigmoid-affine function:

p = σ(wTx + b) (15)

σ(z) =
1

1 + e−z (16)

The resulting model for Y becomes:

Y ∼ Bernoulli(σ(wTx + b)) (17)

which is exactly the logistic regression model. The difference is that instead of
directly assuming the logistic form, we have chosen to interpret logistic regression
model as an extension of the Bernoulli distribution.

We can now perform log-likelihood maximization as usual. The likelihood is

6A linear function p = wT x would be even simpler than affine function p = wT x + b.
7We could always treat the problem as a constrained optimization problem in which w, b can

only take values such that 0 ≤ wT x + b ≤ 1 but we do not pursue this line of analysis.



6

given by the following expression:

L(θ)

= P
(
(Y(1) = y(1)) ∩ (Y(2) = y(2)) ∩ . . . (Y(i) = y(i)) ∩ . . . (Y(m) = y(m)); θ

)
=

i=m

∏
i=1

P
(

Y(i) = y(i); θ
)

(independence)

=
i=m

∏
i=1

[
{σ(wTx + b)}y(i){1− σ(wTx + b)}(1−y(i))

]
(y(i) ∈ {0, 1}, for all i) (18)

in which θ =
[
w b

]
. The log-likelihood may be written as:

logL(θ) =
i=m

∑
i=1

[
y(i) log σ(wTx + b) + (1− y(i)) log(1− σ(wTx + b))

]
(19)

Log-likelihood may be maximized via any of the numerical optimization algo-
rithms such as gradient descent.

6 Summary

Equations 11 and 19 have the same form. In fact, we can obtain the log-likelihood
for logistic regression by simply replacing the p = σ(wTx+ b) in the log-likelihood
for the Bernoulli model. Logistic regression (in Section 5) is a one-layer8 neural
network as shown in Figure 2a. We can think of the Bernoulli model (Section 4)
as an even simpler neural network that isn’t connected to the input layer at all
(see Figure 2b). Equivalently, Bernoulli model is the same as a logistic regression
model that has all the weights w set to zero and p = σ(b). Bernoulli model
has a constant number of unknown model parameters while logistic regression
has a parameter linear complexity in the input image size. Conversely, we can
also think of logistic regression as one particular extension of the Bernoulli model
framework.

8Typically, we don’t count input layer at all.



7

L(θ)σ

x1

x2

xi

xnx−1

xnx

w1

w2

wi

wnx−1

wnx

(a) Logistic Regression

L(θ)p

x1

x2

xi

xnx−1

xnx

w1 = 0

w2 = 0

wi = 0

wnx−1 = 0

wnx = 0

(b) Bernoulli Model



8

A Appendix A: Bernoulli distribution model using the ad-
ditive form

Continuing from Equation 7 using the additive form (Equation 2):

L(θ)

= P
(
(Y(1) = y(1)) ∩ (Y(2) = y(2)) ∩ . . . (Y(i) = y(i)) ∩ . . . (Y(m) = y(m)); θ

)
=

i=m

∏
i=1

P
(

Y(i) = y(i); θ
)

(independence)

=
i=m

∏
i=1

[
py(i) + (1− p)(1− y(i))

]
(y(i) ∈ {0, 1}, for all i) (20)

While this expression looks daunting, note that y(i) can only be 0 or 1. Let k denote
the number of training samples for which y(i) = 1. This means that there are m− k
training samples for which y(i) = 0. Let’s rewrite py(i) + (1− p)(1− y(i)) as:

py(i) + (1− p)(1− y(i)) = (2y(i)−1)

[
p +

(1− y(i))
(2y(i) − 1)

]
= (2y(i)−1)

[
p + a(i)

]
(21)

in which,

(2y(i)−1) =

{
1 y(i) = 1

−1 y(i) = 0
(22)

a(i) =
(1− y(i))
(2y(i) − 1)

=

{
0 y(i) = 1

−1 y(i) = 0
(23)

Substituting Equation 21 into Equation 20,

L(θ) =
i=m

∏
i=1

(2y(i)−1)︸ ︷︷ ︸
(−1)(m−k)

i=m

∏
i=1

[
p + a(i)

]
︸ ︷︷ ︸

pk(p−1)(m−k)

= pk(1− p)(m−k) (24)

Finally, realizing that k = ∑i=m
i=1 y(i) and m− k = ∑i=m

i=1 (1− y(i)), we see that:

L(θ) = p∑i=m
i=1 y(i)(1− p)∑i=m

i=1 (1−y(i)) =
i=m

∏
i=1

py(i)(1− p)(1−y(i)) (25)

which is the same as the likelihood derived using the multiplicative form (Equa-
tion 10). The resulting maximum likelihood estimation analysis is identical to the
analysis for the multiplicative form.


	1 Introduction
	2 Bernoulli distribution
	3 Binary classification
	4 Modeling the binary classification problem as Bernoulli distribution
	4.1 Modeling binary classification
	4.2 Modeling with Bernoulli distribution

	5 Extension to logistic regression
	6 Summary
	A Appendix A: Bernoulli distribution model using the additive form

